Exercise 3.4.13

Consider

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}
$$

subject to

$$
u(0, t)=A(t), \quad u(L, t)=0, \quad \text { and } \quad u(x, 0)=g(x) .
$$

Assume that $u(x, t)$ has a Fourier sine series. Determine a differential equation for the Fourier coefficients (assume appropriate continuity).

Solution

Start by making the substitution,

$$
w(x, t)=u(x, t)-A(t)\left(1-\frac{x}{L}\right)
$$

so that both boundary conditions become homogeneous.

$$
\begin{array}{ccccc}
w(0, t)=u(0, t)-A(t)(1) & \rightarrow & w(0, t)=A(t)-A(t) & \rightarrow & w(0, t)=0 \\
w(L, t)=u(L, t)-A(t)(0) & \rightarrow & w(L, t)=0-0 & \rightarrow & w(L, t)=0
\end{array}
$$

Solve the substitution for u.

$$
u(x, t)=w(x, t)+A(t)\left(1-\frac{x}{L}\right)
$$

Determine $\partial u / \partial t$ and $\partial^{2} u / \partial x^{2}$.

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\frac{\partial w}{\partial t}+A^{\prime}(t)\left(1-\frac{x}{L}\right) \\
\frac{\partial^{2} u}{\partial x^{2}} & =\frac{\partial^{2} w}{\partial x^{2}}
\end{aligned}
$$

Substitute these formulas into the PDE.

$$
\frac{\partial w}{\partial t}+A^{\prime}(t)\left(1-\frac{x}{L}\right)=k \frac{\partial^{2} w}{\partial x^{2}}
$$

The PDE that w satisfies is then

$$
\frac{\partial w}{\partial t}=k \frac{\partial^{2} w}{\partial x^{2}}+A^{\prime}(t)\left(\frac{x}{L}-1\right) .
$$

In order for the homogeneous Dirichlet boundary conditions to be satisfied, we assume the solution has the form of a Fourier sine series.

$$
\begin{equation*}
w(x, t)=\sum_{n=1}^{\infty} B_{n}(t) \sin \frac{n \pi x}{L} \tag{1}
\end{equation*}
$$

Since w is continuous, this is justified. Apply the initial condition now to determine $B_{n}(0)$.

$$
\begin{aligned}
w(x, 0) & =u(x, 0)-A(0)\left(1-\frac{x}{L}\right) \\
\sum_{n=1}^{\infty} B_{n}(0) \sin \frac{n \pi x}{L} & =g(x)-A(0)\left(1-\frac{x}{L}\right)
\end{aligned}
$$

Multiply both sides by $\sin \frac{p \pi x}{L}$, where p is an integer.

$$
\sum_{n=1}^{\infty} B_{n}(0) \sin \frac{n \pi x}{L} \sin \frac{p \pi x}{L}=\left[g(x)-A(0)\left(1-\frac{x}{L}\right)\right] \sin \frac{p \pi x}{L}
$$

Integrate both sides with respect to x from 0 to L.

$$
\int_{0}^{L} \sum_{n=1}^{\infty} B_{n}(0) \sin \frac{n \pi x}{L} \sin \frac{p \pi x}{L} d x=\int_{0}^{L}\left[g(x)-A(0)\left(1-\frac{x}{L}\right)\right] \sin \frac{p \pi x}{L} d x
$$

Split up the integral on the left and bring the constants in front.

$$
\sum_{n=1}^{\infty} B_{n}(0) \int_{0}^{L} \sin \frac{n \pi x}{L} \sin \frac{p \pi x}{L} d x=\int_{0}^{L}\left[g(x)-A(0)\left(1-\frac{x}{L}\right)\right] \sin \frac{p \pi x}{L} d x
$$

The sine functions are orthogonal, so the integral on the left is zero if $n \neq p$. Only if $n=p$ is it nonzero.

$$
B_{n}(0) \int_{0}^{L} \sin ^{2} \frac{n \pi x}{L} d x=\int_{0}^{L}\left[g(x)-A(0)\left(1-\frac{x}{L}\right)\right] \sin \frac{n \pi x}{L} d x
$$

Evaluate the integral on the left.

$$
B_{n}(0)\left(\frac{L}{2}\right)=\int_{0}^{L}\left[g(x)-A(0)\left(1-\frac{x}{L}\right)\right] \sin \frac{n \pi x}{L} d x
$$

Solve for $B_{n}(0)$.

$$
\begin{aligned}
B_{n}(0) & =\frac{2}{L} \int_{0}^{L}\left[g(x)-A(0)\left(1-\frac{x}{L}\right)\right] \sin \frac{n \pi x}{L} d x \\
& =\frac{2}{L} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x-\frac{2}{L} A(0) \int_{0}^{L}\left(1-\frac{x}{L}\right) \sin \frac{n \pi x}{L} d x \\
& =\frac{2}{L} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x-\frac{2}{n \pi} A(0)
\end{aligned}
$$

This formula for $B_{n}(0)$ will be needed later. Assuming $\partial w / \partial t$ is continuous, term-by-term differentiation with respect to t in equation (1) is valid.

$$
\frac{\partial w}{\partial t}=\sum_{n=1}^{\infty} B_{n}^{\prime}(t) \sin \frac{n \pi x}{L}
$$

Because w is continuous and $w(0, t)=w(L, t)=0$, differentiation of the sine series with respect to x in equation (1) is valid as well.

$$
\frac{\partial w}{\partial x}=\sum_{n=1}^{\infty} \frac{n \pi}{L} B_{n}(t) \cos \frac{n \pi x}{L}
$$

$\partial u / \partial x$ is continuous, so differentiation of this cosine series with respect to x is justified.

$$
\frac{\partial^{2} w}{\partial x^{2}}=\sum_{n=1}^{\infty}\left(-\frac{n^{2} \pi^{2}}{L^{2}}\right) B_{n}(t) \sin \frac{n \pi x}{L}
$$

Substitute these infinite series into the PDE for w.

$$
\sum_{n=1}^{\infty} B_{n}^{\prime}(t) \sin \frac{n \pi x}{L}=k \sum_{n=1}^{\infty}\left(-\frac{n^{2} \pi^{2}}{L^{2}}\right) B_{n}(t) \sin \frac{n \pi x}{L}+A^{\prime}(t)\left(\frac{x}{L}-1\right)
$$

Bring them both to the left side.

$$
\sum_{n=1}^{\infty} B_{n}^{\prime}(t) \sin \frac{n \pi x}{L}+k \sum_{n=1}^{\infty}\left(\frac{n^{2} \pi^{2}}{L^{2}}\right) B_{n}(t) \sin \frac{n \pi x}{L}=A^{\prime}(t)\left(\frac{x}{L}-1\right)
$$

Combine them and factor the summand.

$$
\sum_{n=1}^{\infty}\left[B_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} B_{n}(t)\right] \sin \frac{n \pi x}{L}=A^{\prime}(t)\left(\frac{x}{L}-1\right)
$$

To obtain the quantity in square brackets, multiply both sides by $\sin \frac{p \pi x}{L}$, where p is an integer,

$$
\sum_{n=1}^{\infty}\left[B_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} B_{n}(t)\right] \sin \frac{n \pi x}{L} \sin \frac{p \pi x}{L}=A^{\prime}(t)\left(\frac{x}{L}-1\right) \sin \frac{p \pi x}{L}
$$

and then integrate both sides with respect to x from 0 to L.

$$
\int_{0}^{L} \sum_{n=1}^{\infty}\left[B_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} B_{n}(t)\right] \sin \frac{n \pi x}{L} \sin \frac{p \pi x}{L} d x=\int_{0}^{L} A^{\prime}(t)\left(\frac{x}{L}-1\right) \sin \frac{p \pi x}{L} d x
$$

Split up the integral on the left and bring the constants in front on both sides.

$$
\sum_{n=1}^{\infty}\left[B_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} B_{n}(t)\right] \int_{0}^{L} \sin \frac{n \pi x}{L} \sin \frac{p \pi x}{L} d x=A^{\prime}(t) \int_{0}^{L}\left(\frac{x}{L}-1\right) \sin \frac{p \pi x}{L} d x
$$

Since the sine functions are orthogonal, the integral on the left is zero if $n \neq p$. Only if $n=p$ is it nonzero.

$$
\left[B_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} B_{n}(t)\right] \int_{0}^{L} \sin ^{2} \frac{n \pi x}{L} d x=A^{\prime}(t) \int_{0}^{L}\left(\frac{x}{L}-1\right) \sin \frac{n \pi x}{L} d x
$$

Evaluate the integrals.

$$
\left[B_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} B_{n}(t)\right] \frac{L}{2}=A^{\prime}(t)\left(-\frac{L}{n \pi}\right)
$$

Multiply both sides by $2 / L$.

$$
B_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} B_{n}(t)=-\frac{2}{n \pi} A^{\prime}(t)
$$

This is a first-order linear ODE, so it can be solved by using an integrating factor I.

$$
I=\exp \left(\int^{t} \frac{k n^{2} \pi^{2}}{L^{2}} d s\right)=\exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right)
$$

Multiply both sides of the ODE by I.

$$
\exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right) B_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right) B_{n}(t)=-\frac{2}{n \pi} A^{\prime}(t) \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right)
$$

The left side can be written as $d / d t\left(I B_{n}\right)$ by the product rule.

$$
\frac{d}{d t}\left[\exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right) B_{n}(t)\right]=-\frac{2}{n \pi} A^{\prime}(t) \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right)
$$

Integrate both sides with respect to t.

$$
\exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right) B_{n}(t)=-\frac{2}{n \pi} \int^{t} A^{\prime}(s) \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} s\right) d s+C
$$

The lower limit of integration is arbitrary, so it will be set to zero. C will be adjusted to account for any choice that's made. Use integration by parts on the right side to simplify the formula.

$$
\begin{aligned}
\exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right) B_{n}(t) & =-\frac{2}{n \pi} \int_{0}^{t} A^{\prime}(s) \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} s\right) d s+C \\
& =-\frac{2}{n \pi}\left[\left.A(s) \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} s\right)\right|_{0} ^{t}-\int_{0}^{t} A(s) \frac{d}{d s} \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} s\right) d s\right]+C \\
& =-\frac{2}{n \pi}\left[A(t) \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right)-A(0)-\int_{0}^{t} A(s)\left(\frac{k n^{2} \pi^{2}}{L^{2}}\right) \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} s\right) d s\right]+C \\
& =-\frac{2}{n \pi}\left[A(t) \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right)-A(0)-\frac{k n^{2} \pi^{2}}{L^{2}} \int_{0}^{t} A(s) \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} s\right) d s\right]+C
\end{aligned}
$$

Set $t=0$ and use the formula found for $B_{n}(0)$ earlier.

$$
B_{n}(0)=C=\frac{2}{L} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x-\frac{2}{n \pi} A(0)
$$

Substitute this formula for C into the previous one and simplify it.

$$
\exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right) B_{n}(t)=-\frac{2}{n \pi}\left[A(t) \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right)-\frac{k n^{2} \pi^{2}}{L^{2}} \int_{0}^{t} A(s) \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} s\right) d s\right]+\frac{2}{L} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x
$$

Solve for $B_{n}(t)$.

$$
B_{n}(t)=-\frac{2}{n \pi} A(t)+\left[\frac{2 k n \pi}{L^{2}} \int_{0}^{t} A(s) \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} s\right) d s+\frac{2}{L} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x\right] \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right)
$$

The solution for w is then

$$
\begin{aligned}
w(x, t) & =\sum_{n=1}^{\infty} B_{n}(t) \sin \frac{n \pi x}{L} \\
& =\sum_{n=1}^{\infty}\left\{-\frac{2}{n \pi} A(t)+\left[\frac{2 k n \pi}{L^{2}} \int_{0}^{t} A(s) \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} s\right) d s+\frac{2}{L} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x\right] \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right)\right\} \sin \frac{n \pi x}{L} .
\end{aligned}
$$

Therefore, since $u(x, t)=w(x, t)+A(t)(1-x / L)$,

$$
\begin{aligned}
u(x, t)= & A(t)\left(1-\frac{x}{L}\right) \\
& +\frac{2}{L} \sum_{n=1}^{\infty}\left\{\left[\frac{k n \pi}{L} \int_{0}^{t} A(s) \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} s\right) d s+\int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x\right] \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right)-\frac{L}{n \pi} A(t)\right\} \sin \frac{n \pi x}{L} .
\end{aligned}
$$

